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Abstract : We have already proposed a simulator of road wansportation system, and called it MITRAM. The MITRAM
consists of microscepic models for vehicle which have capability of own decision-making through the application of fuzzy
logic. This microscopic medel is cafled Fuzzy Model Vehicie (FMV). We have simulated the driving operation of a following
vehicle through the FMV, assuming only a leading and a following vehicle existed. In this case, the fuzzy logic inference
determined the following vehicle acceteration. Data of the following vehicle speed, the relative speed of the following to the
leading vehicle and so on, were obtained as the simulated data of the FMV. To calculate only the mean and the variance of the
simulated data was not enough way fo evaluate the logic inferences of the FMV. In this paper, we proposed an evaluating
method by using a chaoiic analysis. In order to compare the simulated data with the measured data of an actual vehicle,
correlation exponents and Lyapunov exponents were calculated for the data of the following vehicle speed, the relative speed
of the following to the leading vehicle, and the spacing distance between the following and the leading vehicles. We also
calculated both the exponeats of the data normalized by the standard deviation in order to evaluate the effect of the variance.
The correlation exponents and the maximum Lyapunov exponents of the relative speed were different from those of the
following vehicie speed and the spacing distance, Differences between the simulation and the measurement data were found at
both the correlation exponents and the Lyapunov exponents. The variance had a larger effect on the corelation exponents for
the simulation data than for the measurement data.

Lyapunov exponents were caleulated for the data of the
following vehicle speed {V)), the relative speed of the

1. INTRODUCTION following to the leading vehicle (Vi), and the spacing

distance between the following and the leading vehicles
We have already proposed a MITRAM [Satoh et al., 1992]. (Dify. We also calculated both the exponents of the data
The MITRAM is a simulator of road transportation system normalized by the standard deviation in order to evaluate
for analyzing traffic jam. The MITRAM consists of the effect of the variance on the exponenis. The FMV

microscopic models for vehicle which have capability of evaluated in this paper was a model in which driving
own decision-making through the application of fuzzy logic operations could be changed according to various
{H(‘)l’idﬂ et al., 199”. This model is called FHZZ}/ todel conditions. It was shown i}y Itakura ot al. [1996} The
Vehicle (FMV}. The FMYVY 1s constructed with multistage following sections give full details of the FMV.

binomial fuzzy logic inference [Itakura et al, 1992; Yikai

et al, 1992; 1993]. Many membership functions of the

fuzzy logic are awtomaticaliy determined by actual data 2. FUZZY MODEL VEHICLE (FMV)
with using neural network {ltakura et al,, 1993a; 1993b].
We have simulated driving operations of a following 2.1 Concept of the FMV

vehicie through the FMYV, assuming only two vehicles ( a

leading a“q a fgllowing vehiclgs ) existed. In ‘h_is case, .the We have indicated that various realistic maffic conditions
fuzzy logic inference determined the following vehicle could not be exactly simulated by using a macroscopic
aceeleration. Data of the following vehicle speed, the model which used statistical probability {Satoh et al., 1992].
relative speed of the following to the leading vehicle and so In order to realize realistic traffic conditions on a simulator,
on, were obfained as the simulated dara of the FMV. We it is necessary to simulate behavior of individual vehicle
figured the results of simuiated data to evaluate the with using a microscopic model. Differential equations
simulation models. The results figured in time series using in the microscopic simulator [Leutzbach, 1972} is not
expression - caused insufficiency - of information about necessarily suitable to instinctively understand driving
constructing and correcting the models. On the other hand, operations. On the other hand, fuzzy logic is suitable to
the results figured in distribution charis caused disregard of understand and construct the logic for some decision of
time dependency of the data. To calculate only the mean human behavior such as driver’s decision-making.

and the variance of the simulated data was not enough way Drivers control the movement of a vehicle through the
to evaluate the FMV [lakura et al., 1994; 1995]. _ operations of an accelerator, a brake and a steering wheel
in this paper, we proposed an evaluating method by using a according to various control factors. The processing
chaotic analysis on the basis of embedding theorem algorithms for the wheel operation is generally very
[Takens, 19811, instead of traditional statistical evaluation. complicated. Therefore, we incorporated the Clothoid
In order to compare the simulated data with the measured curve, which is recently used for the road design, into the
data of an actual vehicle, correlation exponents and MITRAM in order to describe the movement of vehicles. It
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means that the movement of vehicles can be almost
expressed one-dimensionally, that is. a vehicle on a road
can be treated as something like a train running on a rail,

and a trace line of the vehicle can be described by joint of

straight lines, Clothoid curves, and arcs of a circle.

Consequently, the operation of the whee! was not necessary.

The operations we simulated on the FMV were almost the
operations of the accelerator and the brake.

The FMYV could take into consideration of information thar
is necessary for drivers’ decision-making, We, however,

must solve the probiem how to comstruct the fuzzy iogic of

the FMV. If it were constructed with polynomial fuzzy
inference comsisting of one stage, required logic number
would be usually “y” to the power of “x”, where “x”" equals
to the number of input parameters and “'y” equals to the
number of linguistic wuth-values of input parameters,
Considering information that is necessary for drivers’
decision-making, great number of input parameters are
necessary so that the required logic number would be
numerous. It is thought that most of the required logic are
not always necessary because input parameters which
reflect the main part of drivers’ decision-making are
alternated by the moment and the state. Therefore, it is
useful to use a method which has not general inquiry but
selective inquiry of input parameters. So we have proposed
to construct the FMVY consisting of a multistage binomial
fuzzy logic that was easy to understand.

2.2 Concrete Model for the FMV

We must identify varicus fuzzy logic parameters such as
membership functions to concrete the FMV consisting of a
multistage binomial fuzzy logic. Therefore, we proposed
the binomial fuzzy logic constructed by a neural network,
shown in Fig. 1. When two non-fuzzy values are inputted to
the binomial fuzzy logic, a non-fuzzy value can be obtained
as its output. The fuzzy membership functicn could be
automatically predetermined with using a back propagation
method.
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Fig. 1 Neural network for binomial fuzzy logic.

The neural network shown in Fig.l is correspondence to
the binomial fuzzy logic with two membership functions by
a input. Data was put into the first layer by digitizing to N
steps between the minimum and the maximum values. The
second layer is correspondence to the linguistic truth-value.
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The sypapse weights (Wa[jil{i:], Wilj2][iz]) between the
tirst and the second layers are correspondence to the values
of the membership function of the input data. The output of
the third layer is compatible degree of the premise (IF-part),
and the synapse weights {W[][£]) between the third and
the fourth layers are parameters of the consequence
(THEN-part). The output (¥) is calculated as the center of
gravity of the fourth layer's output. The output of second
layer, Ohfji] and O:f)2], are given by the following
equations:

0,1/, ZX{f VW7, 00 D, for =i 2 ()

The cutput of the fourth layer () is given as follows:
0,11=Y Ok WINk, 2)

where

Oylk1 = O, [, - WiTk1(/, 1+ O, 1), 1 Wik,
=(j,-1x2+j,. (3}

When the input data are X:[i] and Xa[iz], T is given to only
the i1 th and the f: th units of the first layer, and 0 is given
10 all other units. As a results, O:f1] and O:fj2] are egual to
Walji1fi:] and W[j2][i2] respectively. Then, the output Y is
given as follows:

¥, {min)+ y, - (max) ) (4)
Wty

where (min) is the minimum value and {max) is the
maximum value in the output data we measured.

In order to determine the values of the membership
function, raining data, which were obtained through the
measurement under actual traffic conditions, were given to
the input and the output of the neural network. The values
of synapse weights corresponding to the membership
functions could be automatically obtained with using a
back propagation method.

We have simulated one pair of 2 leading and a following
vehicles by wusing the neural network shown im
Fig.liltakara et al, 1994]. fmpus-7 was the relative speed of
the following to the leading vehicle {Vip, Input-2 was the
spacing distance between the following and the leading
vehicles (D), and the output was the following vehicle
acceleration. However, actual operations of a driver could
not be completely modeied on this model. It was thought
that a driver could change own operations according to
Judgment whether the leading vehicle acceleration was
positive or negative. In order to give any function of
changing the driving operation according to various
conditions { the leading vehicle acceleration. etc.), it is
necessary (o give selective training method depending on
conditions to the FMV, Consequently, we proposed the
modei shown in Fig.2,

This model consists of four neural networks (NN1, NN2,
NN3, and NN4) shown in Fig.1. faput-1 was Vi, inpur.2



was Dis, Condition-{ was Al Condition-2 was D, and
Outpur Yo was Ay where Al and Af are a leading and 2
following vehicle acceleration respectively. Membership
functions (W11, W12, W21, and W22) are used to unify I,
Y2, ¥3, and Ya. The outpus { Ym) is given as follows:

Y, =WIxY, +WI2x¥,, Y, =WlIxY, +WI2xY,,
Y, =W2IxY, + Wi2x¥,. (&)

When the value of condition- is smail, Wil is the larger
and W12 is the smaller so that the influence of the ¥1 on
the Y12 is stronger than that of the Y2, On the other hand,
when the value of condition-1 is large, W12 is the larger
and W11 is the smaller so that the influence of the ¥2 on
the ¥12 is stronger than thai of the ¥i. The error at the ¥12
is distributed to NNI and NN2 at the ratio of W11 : Wi2
during training. As a result, the logic in the case where the
value of the cordition-7 is small can be built into the NNT,
and the logic in the case where the vatue of the condition-1
is large can be buili into the NN2, We thought that the
simulation mode! shown in Fig.2 was a model in which
driving operations could be changed according fo
condition-1 and condition-2.

B ¥

Fig. 2 Model for FMYV.

3, CHAOTIC ANALYSES
3.1 Correlation Exponent

At first, we created a set of d-dimensional vector out of an
actual time series measured at the discrete time interval Al
An embedding dimension o was chosen and a d-
dimensional orbit was reconstructed by use of delay
coordinates: X(={ x(1). x{i+iy), ", x{i+(d-Dity } for
i=1,2, N -1+ 1, where ¢ is the delay time, V, is the total
number of the data. The dynamic information in the one-
dimensionat data has been converted 1o spatial information
in the d-dimensional vector set.

A correlation expenent is defined on the basis of a long-
tme d-dimensional orbit  X{{) by considering the
corretation integral

i .
Clry == > H{r—|X({) - X(j)) ()

e e
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where H is the Heaviside function and N, is the total

number of the d-dimensional vector set. This correlation
integral counts the number of pairs whose distance
|X(:')- X(j)| is smaller than r. When the C{r) behaves as

a power of » for small ri C{r)e<r’, the exponent V is

defined as the cormelation exponeni. The comelation
exponent is usually determined by a constant slope of the
plot of 1ogCir) as a function of log r. These algorithm was
shown by Grassberger et al. [1983] in detail.

3.2 Lyapunev Exponent

We chase an embedding dimension d and construct a d-
dimensicnal orbit X(j). We have to find any set of point
Xk (i=1,2,--+, Np) which is the neighbors of X(j), that is,
the points X; of the orbit which are contained in a bali of
suitable radius r centered at X{j}. The displacement vector
() between X(k,) and X{j) as follows:

=X —XG) (X=X <r). (7

After the evolution of a tme interval T=mds, the orbital
point will proceed to X(j+m) and the point X{k;) of the
neighbors of X (/) to X(kq+m). The displacement vector ¥(1)
is thereby mapped to

Z(D=X (k) —X{j+m). {8y

If the radius 7 is small enough for the displacement vector
y() and zZ{i) to be regarded as good approximation of
tangent vectors in the tangent space, evolution of y(i) to
Z{) can be represented by some mairix A{j), as
2{D)=A{yy{i). The least-square-error algorithm was used
for the optimal estimation of the A(j} from the data sets
{(v(©)} and {z(d)}. The Lyapunov expoments can be
computed as

1 M
= | J— ] i) (9}
A, Llﬂ(M’c JEMHUJ%U)]

for i=1,2,"-, d, where (g;{/)) is a set of basis vector of the
tangent space at X{). The maximum },; for =12, d is
the maximum Lyapunov exponment. In the numerical
procedure, we choose an arbitrary set e;(7) and operate with
the matrix A(f) on e;{)), and renormalized A(fe () to have
tength one. Using the Gram-Schmidt procedure, maintain
mutual orthgonality of the basis. We repeat this procedure
for A iterations and compuie (9). These algorithm was
shown by Sano et al. [1983] and Eclkmann et al. [1986].

4. RESULTS AND DISCUSBIONS

We drove two vehicle at roads in a city area. The speed
of the vehicles and the spacing distance between the
vehicies were measured at discrete intervals of 1 second



only when there were no other vehicles between our
vehicles. Data sets for analysis were chosen except on
the condition both the leading and the following vehicles
did not move at the same time. The total number of the
data sets was 4252, Acceleration of the following vehicle
was calculated by using the proposed models shown in
Fig.2 with a back propagation method, and one pair of the
leading and the following vehicles was simulated to obtain
simulation data.

We show the mean and the standard deviation of the
measurernent and the simulation data in Table 1. The
measurement and the simulation data of the Vris almost the
same in the mean and the standard deviations. although
those of the Drrand the Viris not

Tablie ] Mean and standard deviation.
Measurement Simulation
Mean 5.0, Mean 5.D.
Vrm/s] 74476 42435 75200 44788
Dijm) 14.561 87105 25.683 19.752
Vi [m/s] 00161 [.1980 00813 1.8652
{8.D. : Standard deviation)

We limit the embedding dimension d between 2 and 10, In
order to evaluate the influence of the delay time fv, we vary
the tz between | and 10. In order to get a calculation result
of Lyapunov exponents, it is necessary that there are many
neighbors of X(f) greater than the embedding dimension.
The number of the neighbors was determined by a radius r
shown in (7). However, we could not always set a suitable
radius 7 so that we could not get all the calculation resuits
of the maximum Lyapunov exponent.

4.1 Correlation Exponents for Data

Fig.3 shows the correlation exponents for the measurement
data at the delay time #+=3 and fz=9. The relative speed of
the following to the leading vehicle (Vi) shows a relatively
flat section in the region above the embedding dimension
=9, Note that the correlation exponents of the Viris larger
than those of the following vehicle speed (V) and the
spacing distance between the following and the leading
vehicles (D1} in the region above d=3. The exponents of
the V¢ and the iy show nearly the same value in ali the
region. The V/ points at fo=6 are smaller than the Vr points
at 14=3 whereas the Dy points at fe=6 are larger than the
Dy points at f2=3. The influence of the delay time on the
Viris smaller than that on the Vror the Dis.

Fig.4 shows the correlation exponents for the simulation
daia. The Vrpoints at =3 are smailler than the Vy points at
t=6 in Fig.d, Conversely in Fig.3, the Vr points at ts=0
were smaller than the V7 points at =3, The differences
between ta=3 and =6 for the Viy of the simulation data are
stightly larger than those of the measurement data. Note
that All the correlation exponents in the region above d=3
are small as compared with Fig.3. Tt was thought that the
degrees of freedom of the dynamic system constructed in
the simulation medel was smaller than that of a actual
driving operation.

1411

2
S 6 o
=
2.1
53
&
midor
2
Q .
el
3
¥
=2
8 sty Vi {ta3) --@-- Vi (t=5)
1 e Dt {fa=3) o2 e Dip (L)
e VY (1a=3) - - 8-+ Vi (L=6)

0 L
i 2 3 4 5 6 7 8 % 10
Embedding Dimension

Fig. 3 Cosrelation exponents for measurement data
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Fig. 4 Correlation exponents for simulation data.

4.2 Lyapunoy Exponents for Data

Fig.5 shows the maximum Lyapunov exponents for the
measurement data at the delay time fe=3 and ts=6. The
features of the Vy, the Dy and the Vi curves are almost the
same in all the region except for the Vi point at fe=3 in
d=2, the Viy points at #=6 in d=2, 3, and the Dir point at
ta==6 i d=8.

Fig.6 shows the maximum Lyapunov exponents for the
simulation data. The features of the Dy and the Viy curves
in Fig.6 are different from those in Fig.5. The ¥/ points at
{+=6 in the region above d=8 are also different. We could
not take a suitable radius r. Therefore, we could not
catculate many maximum Lyapunov expeneats enough for
comparison between the measurement and the simulation
data.

Correlation exponents and L.yapunov exponents of data are
independent of the mean of data because displacement of
the mean corresponds to parallel displacement in the
embedding dimensional space. However, both the



exponents are dependent on the variance. In order to seek
availability to use both the exponents as independent
criteria of the variance for evaluation of the simulation data,
we normalized data x{i) as follows:

xrliy={xli}-am} ) x5, (10

where xa(i} is the normalized data. xw and xs are the mean
and the standard deviation of the data x({) respectively, We
examined the relation between the variance and both the
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Fig.6 Maximum Lyapunov exponenis for simulation data.

4.3 Correlation Exponents for Normalized Data

Fig.7 shows the correlation exponents for the normalized
measurement data at the delay time fe=3 and t=6. The
features of the curves in Fig.7 hardly change from those in
Fig.3. It was thought that the effect of the variance on the
correlation exponents was negligible for the measurement
data. Note that the influences of the delay time on the Vy,

the D, and the Vi.fare smali as compared with Fig.3.
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Fig.B Correlation exponenis for normalized simulation data.

Fig.8 shows the correlation exponents for the normalized
simulation data. Note that the correlation exponents of the
Vi in the region above d=3 are smaller than those in Fig.d.
It was not observed in the measurement data. The effect of
the variance on the correlation exponents of the Viy was
noticeably large for the simulation data. We proved that the
effect of the variance on the correlation exponenis was not
always small and was dependent on the other factors of
data. We thought that the useful suggestions 1o construct
actual driving operations into simulation models might be
included in the relation between the variance and the
correlation exponents.

4.4 Lyapunov Exponents for Mormalized Data

Fig.% and Fig.10 show the maximum Lyapunov exponents
for the normalized measurement data and the normalized
simulation data respectively, at the delay time =3 and =6,
In Fig.9, the feature of the Vir curve in the region below
d=5 is different from the Vrand the Dry curves. In all the



region of Fig. 10, the features of the Diy and the Vi curves
are different from those in Fig.6. We proved that the effect
of the variance on the maximum Lyapunov exponents was
not always constant and dependent on the data.
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Fig. 1 Maximum Lyapunov exponents for
normalized simulation data,

5. COMCLUSIONS

Correlation exponenis and Lyapunov exponents were
caleulated for data of a following vehicle speed (Vi) a
relative speed of a following to a leading vehicle (Vi) and
a spacing distance between a following and a leading
vehicles {Di). We also calculated both the exponents of
the data normalized by the standard deviation in order to
evaluate the effect of the variance. Simulation data were
obtained from a model in which driving operation could be
changed according to various conditions. The results are
summarized as follows: 1) For the measurement data, the
correlation exponents of the Vi is larger than those of the
Vi and the Diy in the region above d=3. 2) All the
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correlation exponents of the simulation data are smalier
than those of the measurement data. 3) The effects of the
variance on the correlation exponents and the Lyapunov
exponents are dependent on the other factors of data.
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